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Abstract. This paper discussesthe equivalenceprinciple (classicaland quantum)
in its simplestform (i.e., for uniformly acceleratedframes)from the viewpoint
of thecohomologyof groups.

1. INTRODUCTION

Many discussionsexist concerningthe relevanceof non-inertial framesfor the

descriptionof physicalphenomena.Classicallysuchdiscussionsare often couched
in the languageof variousequivalenceprinciplesand thesearesometimeselevated

to postulatesthat permeatequantummechanicsandquantumfield theory. In an
attemptto makemore precisesuchimprecisenotionswe wish to point out that

a natural cohomological explanation exists for the absenceof a well-defined
equivalenceprinciple in a relativistic framework.

We examinefirst the dynamics of massiveparticlesunder the influenceof a

constantforce in a Newtonianinertial frame.The existenceof a global frame of
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referencein which the particle appearsfree is tracedto the cohomologicalstruc-

ture of the Galilei group (the invariancegroupof Newtonianmechanics)in one
spaceand time dimensionsallowing for non-trivial U(l) extensions(the quantum

group of the Schrodingerequation).A relativistic generalisationis obtainedby
adopting the (1, 1) Poincarégroup (the isometry group of (1, 1) Minkowski

space)as dynamicalgroup for the classicalmechanicsand its non-trivial U(l)
extensionsto describe the quantisation. The basic observationis that these

extensionsare characterisedby an interactionparameter(that might for example

be interpretedas the constantforce experiencedby an electric chargecoupled
to a uniform electric field in an inertial Minkowski frame) that can never be
transformedto zero by a changeof frame. Unlike the non-relativisticcasethe

relevant group cohomology is only one-dimensionalrather than two and no
freedom exists to <<remove>> the interaction.Thus it is only in a Galilean(or
<<non-relativistic>>) setting that one can properly compensatethe effectsof a

constantNewtonianforce in an inertial frame by transformingthe Schrodinger
Hamiltonian to a frame of referencein uniform Newtonian acceleration.By
contrastone may never find in Minkowski spacea coordinatepatchin which

a coupled Klein-Gordon equationcan be interpretedas being non-interacting.

2. DYNAMICS OF A GALILEAN PARTICLE IN THE PRESENCE OF A
CONSTANT FORCE

The classicalmechanicsof a non-relativisticparticle of massm in the presence
of a constantforce may be describedby a variational principle basedon the

so-calledPoincaré-Cartan(PC) form, which maybe written as

p
2 F

(2.1) ®~=—xdp—— dt+ —(xdt—tdx).
2m 2

Although (2.1) doesnot coincidewith themore familiar expression8~= pdx —

p2
—Hdt whereH= —Fx, the differenceis an(irrelevant)exactform. Indeed,

2m

with either the solutionsto the equationsof the motion are given by cross
sectionsof the bundle IR x T*(M) -÷ IR, — where IR is parameterisedby the
absoluteNewtoniantime t andM(= IR) by x — which satisfy i~dO~*= 0 VX,

where X = Xt ~ + XX + X” -~— is a general vector field on IR x T*(M)
at ax ap

ands’1’ = (x(t), p(t)).
A geometricdescriptionof the correspondingquantumsystemmay startfrom

the considerationof thegeneralisedquantisationform on (R x T*(M)) x S1 =
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p
2 F d~

(2.2) ®=—xdp— —dt+—(xdt—tdx)+h —
2m 2 i~

where~globally parametensesS1 = U( 1). The pair(~,�~)is called[1] ageneralised
quantum manifold; it differs from the Kostant-Souriauquantummanifold [2]

in that, becauseG containsthe time, (G, 0) is not a contactmanifold.A theory

basedon (2.1) [(2.2)] will be said to be associatedwith the classical[quantumi
particleof massm underthe influenceof a constantforceF.

Both the classical and quantum description based on (2.1), (2.2) may be

unified [11if Ths takento be agroupmanifold.In the presentcaseof theconstant
force, this manifold turns out to be [3] the centralU(l)-extensionof theGalilei

groupG~’’~in one spaceand time dimensionsgiven by the following grouplaw

([t”, x”, V”; f”] = [t’ , x’ , V’; ~‘]* [t, x, V; c]):
= t’ +

(2.3a) x” = x’ + x + V’t

r = v’ + v

(2.3b) ~“ = exp .~!_~m[x’V+ t(V’V+ ~ V’2)~+_[(t’x —tx’) + V’t’t]~.

The group definedby (2.3) is labelled G(mJ~)~wherethe refersto the fact that

it is a U(1) extensionand (m,F) determinean element(class)in the two dimen-
sional H2(G~”~, U(l)) cohomology vector space to which the non-trivial 2-
-cocycleappearingin (2,3b) belongs.It shouldbe noted that the cocyclehasthe
dimensionsof an action; this, togetherwith (2.5) below, fixes for the group
parametersthe customarydimensions.We shall put h = 1 henceforth.

From (2.3) we may compute the left-invariant vector fields (LIVF) and the

(left) c~’(m,,algebra.We obtain

a a 1 F
X~=—+V—+—mV2——(x—Vt)~

at ax 2 2

a F
(2.4) 1L=_+_t~(x) ax 2

a a
,~=—+mxVZ; Xf~,~=i~—

av a~

and
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~ X~]— X~, [~)~ ~] = m
(2.5)

[X~, X&)] = FZ, [E, any XL] = 0

where is the central U(l) subgroupgenerator.Once the grouplaw is stated,the

generalisedquantisationform is obtainedfrom the (vertical) componentof the
canonical LI form on G(m~~The one-form dual to the (fundamental)vertical

vectorfield of the principal bundle G(m~(U(l)~G~’~)is determinedby the

conditions

(2.6) ®(Z)= 1, ®(anyotherX’~)=0.

Indeed,one easily obtains (2.2) from (2.6) and (2.4) (p~mV).and then it is

possible to define �~,= 0 — d~/i~directly from the group manifold (and,

of course,obtain(2.1)).Becausethe additionof a 2-coboundarydoesnot modify
the extension[4], thereis a certain amount or arbitrarinessin the explicit form
of the non-trivial 2-cocycle appearingin (2.3b) which accountsfor the class

of equivalentO’s (for a givenpairm,F) which differ by an exactform (*)~
The groupmanifold approachto quantisationnow leadsto the wave-equation

by imposing on a generalfunction ‘1’ : G-÷C on the groupmanifold the condi-
tions of being a) U(1)-equivanant(~,‘1’ = i”T!) and b) annihilatedby the genera-
tors of the maximal polarisation subalgebra H which includes the LI vector
fields generatingthe characteristicmodule ~‘® of 0(~’®=!XI i~0= 0 = j~~d0})

and is definedas the maximal horizontal (0(X’~)= 0 VXL E H C ~(m, ~ sub-
algebra of ~(m~ The final result, which is given in terms of the momentum

representationis, of course,the familiar equation

a ~2 a
(2.7) i — — — + F i — Ø(t, p) = 0.

at 2m ap

We remark that (2.1), (2.2) and (2.7) are obtainedby having the groupG(m~

as the only startingpoint. (It is also possibleto have a definition of the classical
limit in the Hamilton-Jacobiversion starting from G(m~~the group which is

obtainedwhen(U(l), ) is replacedby (IR, +), but this will not concernus here).

(*) Noteaddedin proof: For a review, seeV. Aldayaand J.A. deAzc~irraga,GroupFounda-
tionsof Quantumand ClassicalDynamics:towardsaglobalizationandclassificationof someof
their structures,to appearin Fortschr.der Physik(1987).



GROUP THEORETICAL APPROACH TO THE EQUIVALENCE PRINCIPLE. ETC. 307

3. COHOMOLOGY, THE CONSTANT FORCE AND THE EQUIVALENCE
PRINCIPLE IN GALl LEAN MECHANICS

Expression(2.3b) providesus with a cohomologicaldefinition of the massm
and of the constantforce F (or constantaccelerationa = F/rn); they are the
two real parameterswhich characterisethe secondcohomologygroup(2-dimen-

sional vector space) H2(G~’~,U(l)) which in turn characterisesthe central
extensions~ of GU’) by U(1). The mathematicalrole of the massparameter
has been known since the work of Bargmann[4]; to analysethat of F, we first
considera simpleandunseeminglyrelated problem.

Let us look for the mostgeneralgroupparametertransformationwhich leaves
the Galilei group G~’1) group law invariant and thusinducesthe identity in its

Lie algebra, G~”’~.The general transformation(where a, b, . . . ,k are dimen-
sionlessconstants)is

rn
t~at+b — V

F
rn~ F

(3.1) x_c.~+eVt+f—V2+g—t2
F m

F
V=jV+k—?

m

and theconditionthat the new () variablesfulfill again(2.3a)gives

m
= at + b — V

F
I rn lae F

(3.2) x=(aj—e)2+eVt+ — bj— V2+ — — —t2
2 F 2bm

eF

brn

with (aj — e) ~ 0, and a ~ -~- if b = 1~the unit transformationbeing given by

a = I = 1 and all othersbeing zero.Becausethe new variablespreservethe group

law, the 2-cocycle structureof (2.3b) is retainedin the new variables.We may
then computethe G(m~LIVF in termsof the newvariablesaswell as the ~

Lie brackets,with the result(cf. 2.5))

[~~]=~) E~,~[j~]=m(/a—e)(f—b)Z
(3.3)

e
[A~,X&)]=F(ja—e) a— — E [Z,anyX9= 0.

b
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A particular case of the above [(3.2)1 is obtainedfor a = e/b = 1, e = b = 0,

I = 1. Then(3.3) gives(2.5) with the third commutatorreplacedby

(3.4)

This transformation cwi-esponds to choosing a basis in the cohomology vector

space H2(GU 1), U( 1)) for which the vector(m,F) becomes (m, 0).
Theinterestingphysicalconsequenceis that this transformation,whichelimina-

tes the force, and which exists becauseof the two-dimensionalnature of the
group cohomology, provides a group theoretical interpretation of a Galilean

(<<non-relativistic>>)equivalenceprinciple for an observermoving with constant

acceleration(with respect to a Newtonianinertial frame). Indeed,on the GU,b
manifoldthe transformationwhich eliminatesF is noneotherthan

lF
(3.5a) t=I, x=~+— _12

2rn
F

(3.5b) V=V+—j
m

where the variableswith definean acceleratedcoordinatesystem.The change
(3.Sa)brings — up to an exactone-form —(2.1) to the <<free>> form

(3.6) ®K=—id~— —dt

2m

and (3.5) also transforms(2.2) into
~32 d~

(3.7)
2m i~

where ~ is the new U( 1) parameterwhoserelation with ~ may be obtainedby

substituting(3.5) into (2.3b) ((3.7) is neverthelessobvioussince 0 is the vertical

1(2.6)] one-formfor the algebra(2.5) with F = 0 [(3.4)]).
To conclude this sectionwe may establish the connectionamong the above

and the approachto the quantum equivalence principle in Galilean wave
mechanics.There, it obviously meansthe existenceof a transformationgoing
from the Fouriertransformof(2.7),

a 1 a2
(3.8) i — + — — +Fx cb(t,x)=0

at 2m ax2
to

a 1 a2 -

(3.9) i — + — —
at 2rn ax2

exhibiting that a constantforce F in an inertial referencesystemcan be elimi-
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nated by transforming the equation to a uniformly accelerated frame. This is

certainly achieved by the space-timechange of variables (3.5a) provided that
weallow for a phasetransformation,i.e.

(3.10) ~(I, ~) = exp if(t, x) ~(t, x)

whichturns out to be (1)

F
2t3

(3.11) f(t,x)=—Ftx+
6m

The cohomologicalorigin of this phaseis now clear: althoughthe non-inertial

transformation(3.5a) is not a symmetry of the Schrodingerequation,it still
allows usto passfrom (3.8) to (3.9) becauseas alreadymentionedthe transforma-

tion (3.5) of the group variables inducesa changeof basisin theH2(GUl)U(l))

vector spaceso that (rn, F) is now representedby (m, 0). (Although also of
cohomological origin, this phaseshould not be confused with that which is

required when going to inertial systems 5’ moving with velocity V with respect

to S, Ø’(t’, X’) = exp i(mVx + -~-mV2t)~(t,x), which is associatedwith the

Galilean transformation generatedby the-boostssubgroup,andnotwith aconstant

as F). The origin of (3.10) putsin a new perspectivethe fact that one may find
<<accelerated>> solutions ~(t, x) of the <<free>> Schrodingerequation(3.9) (seee.g.
[5, 6]). To interpret a solution to the Schradingerequationoneshoulddeclare

in advance what frame of reference is being used to represented the solution.
If the frame is declared inertial (in the Newtoniansense),then the presenceof

a constant real force canbe compensatedby the space-timenon-inertialeffects
implied by (3.5a), (3.10) leaving a free particle equation in the new frame.

4. THE RELATIVISTIC CASE

To discuss the relativistic motion of a particle and its quantisationwe shall
seek a group which is an extension of the Poincarëgroupandwhich gives(2.3) in

the non-relativistic (contraction c -+ 00) limit. Although the ordinary Poincaré
groupassociatedwith the (1 ,3) Minkowski metric of space-timehas trivial coho-
mology, the (1,1) Poincarégrouphasnon~trivialH2(PU~l),U(1)) cohomologyand
may beextendednon-trivially (i.e., notby directproduct)by U( 1).Theinteresting

(1) In momentumspace,onesimilarly has

F F2
Ø(I,~)=expi — pt2— — t3 ~(t,p).

2m 3m
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fact is that in this caseH2(P~1’~, U(l)) is a one-dimensionalspace,the elements
of which we shall characteriseby F. It is neverthelesspossibleto introducethe

massm througha 2-coboundarybelongingto the classof 2-coboundarieswhich
becomenon-trivial 2-cocyclesin the non-relativistic limit. (In this sense,these
coboundariesare <<less trivial>> than thosewhich remain 2-coboundariesin that

limit and may be said to belong to a pseudo-cohomologyclasswhich, in the
C -+ oo limit, becomesa cohomologyoneparametrisedby m).

We proposethe following group, labelled ~~m’ to describethe relativistic

particle moving undera constantaccelerationof magnitudea = F/rn along the

real line

= x~+ x
0ch~’+ x shx’

(4.la) x”=x”+x~shx+xch~’

x” = x’ + x

F
= ~ exp i — [(x~x —x0x’) ch x’ + (x~x0—x’x) sh x’] +

(4.lb)

+ mc[(x” shx” —xg) —(x’ shx’ —x~)—(xshx—x0)]~

where x
0 = ct, x parameterisesthe boosts (other useful parameterisationsare

chx=(1—V2/c2)”2, a~sh~/2,p
0=rnc(1+2ct

2)_rncshx, p~2mca(1+

+ a2)1/2 mcchx). Onealso noticesthe 2-coboundarystructureof theexponent
in m in (4.lb). It may be easily checkedthat urn ~ [(4.1)] is G(mJ~[(2.3)]

as it should.We use the label (F)rn to emphasisethat, sincem is associatedwith

a 2-coboundary,only F characterisesthe non-trivial cocycle of J

12(pU.U, U(l)).

In the contraction (c -÷00) limit, (4.1) becomesits non-relativistic counterpart
(2.3). themass2-coboundarybecominga non-trivial 2-cocycle.

Following the sameschemeof Sec. 3 we find the Lie algebracommutators

[~~~o)] 2X&) [~)~~‘~)]= _2C~~~—rnc~)
(4.2) F -~

[XL , X(X)] = — E [~. anyXL] = 0
(x~ c

(again, urn ~m [(4.2)] = ~ [(2.5)]). The form 0 dual to givesthe gene-

ralisedquantisationform,

F d~
(4.3) 0——xdp—(p°—mc)dx°+— (xdx°—x°dx)+

2c
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which, becausethe appearance(of the otherwiseexact) mcdx0term, has(2.2)
as the non-relativistic limit. To seethat (4.3) describesa particle submittedto
a constant force it is sufficient to evaluatethe classicaltrajectoriesfrom the

associatedPoincaré-Cartanform or, equivalently, to integrate the non U( 1)-
-componentsof the characteristicmodule (Sec. 2) which turns out to be

generatedby the vectorfield

F
(4.4) C=X&o)+ 2

2mc

where (2)

a , a F p
0—mc

(4.5a) X~O)=— —~ + — — + —i (x0p—xp0)+ p0
mc ax mc ax 2mc mc

(4.5b) X(0) = 2p0 — + 2p0x

Theresult is, for a suitable pairof initial conditions,

rnC
2 F mc2 F

(4’6) x°= — sh — r x = — ch — r
F mc F mc

i.e., the branch of a hyperbolacorrespondingto a motion with acceleration
d2x~

aM= —,a2=(F/m)2.
dr2

We may now try to follow the sameline of reasoningof section3 to eliminate

F. But we immediately notice that the local transformationto the accelerated

(~)frame,

mc2
x0= — +.~ sh

F mc2
2

mc xF
x= — + ch

F mc2

(2) Wegive here, for completeness,theremainingnon-trivialgenerator

p a Po ~ a p
0—mc

(4.5c) — — + — —+ —i [poxo—px]+ pX mc a~ mc ax 2c mc

One may check that, in the limit c -÷ oo, (4.5) leads to (2.4) and C to X~+ -~ X~.which
generatesthe characteristicmoduleof(2.2).
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whose C -+oo limit precisely gives the space-timetransformationsof (3.Sa),

cannot be completedwith a transformationin the boost parameterx to obtain

a transformationpreservingthe (1,1) Poincarégrouplaw (whichcan be readfrom

(4.la)). In an analogousfashion, there is no transformationin the relativistic

(Poincaré) case which takes the canonical one-form (4.3) to a 0 with F = 0.

Again, this fact is of cohomologicalcharacterand may be provenwith genera-

lity from the algebra~1(~m~BecausethespaceH2 of cohomologyis of dimension

one, it is not possibleto put F = 0 in thepresentrelativistic casewithout chang-

ing the group and accordinglythe dynamical system.Indeed,for F = 0 onehasa

groupwith a direct productstructure(andhencenot isomorphicto ~ That

this cannot (obviously) be the casemay be seenby tyring to get the r.h.s. of

[X1~). X&)] in (4.2) equalto zeroby redefiningthe basisof thealgebra:this leads

immediately to a contradiction, in contrastwith theGalilei casewheretheredefi-

nitions X(
7) -= X(r) + mF X~. x(~~)= ~ ~ = achieve the result (3).

Thus we may concludethat the different role playedby theconstantaccelerated

framesis of cohomologicalorigin.

5. CONCLUSIONS

As is known, the Newtonian and Schrodingerequationsare not tensorial

equationson a space-timemanifold (their evolution is with respectto a preferred

absoluteGalilean time). In this paperwe haveput forward a groupapproachto

the problem of discussingtheir behaviourunderthe transformationto a constant

acceleratedframe of reference, basedon adopting the extendedGalilei group

G(~j~as the dynamical group characterisingthe system.We haveshown that

the possibility of writing the classicaland quantumequationsin a <<free>> form,

can be attributed to the group cohornologicalstructure of the Galilei group in

one time and spacedimensions, the spacedirection being singled out by the

acceleration.In relativistic physics,by contrast,classicalandquantummechanics

may be formulatedtensoriallyon space-timewith prefereedframesexistingonly in
termsof Killing vector fields. Becauseof the different cohomologicalstructureof

the Poincarégroup in two dimensions,a conclusionsimilar to that of the Galilean

(3) Of course,the fact that the8 of (4.3) cannotbe broughtto the form 8(F = 0) =

= —xdp—(p°—mc)dx°+d~/i~does not preclude that we may locally bring C in (4.4)
to X~ [(4.5a)], which is the vector field which generatesthecharacteristicmoduleof 0(F=

(x0)
= 0). (In fact,any regularvectorfield maybewritten in alocal chartin which its integralcurves
are constant coordinate lines). However, the generalisedquantisationform dependson the
whole algebra, andF cannotbe setequal to zero in without changingits structure.
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situation cannotbe drawn, reinforcing the ideathat thereis no analogous<<equi-
valence principle>> for the description of interacting relativistic wave equations.
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